High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation
نویسندگان
چکیده
The Boltzmann equation provides a rigorous theoretical framework to study dilute gas flows at arbitrary degrees of rarefaction. Asymptotic methods have been applied to steady flows, enabling the development of analytical formulae. For unsteady (oscillatory) flows, two important limits have been studied: (i) at low oscillation frequency and small mean free path, slip models have been derived; and (ii) at high oscillation frequency and large mean free path, the leading-order dynamics are free-molecular. In this article, the complementary case of small mean free path and high oscillation frequency is examined in detail. All walls are solid and of arbitrary smooth shape. We perform a matched asymptotic expansion of the unsteady linearized Boltzmann–BGK equation in the small parameter ν/ω, where ν is the collision frequency of gas particles and ω is the characteristic oscillation frequency of the flow. Critically, an algebraic expression is derived for the perturbed mass distribution function throughout the bulk of the gas away from any walls, at all orders in the frequency ratio ν/ω. This is supplemented by a boundary layer correction defined by a set of first-order differential equations. This system is solved explicitly and in complete generality. We thus provide analytical expressions up to first order in the frequency ratio, for the density, temperature, mean velocity and stress tensor of the gas, in terms of the temperature and mean velocity of the wall, and the applied body force. In stark contrast to other asymptotic regimes, these explicit formulae eliminate the need to solve a differential equation for a body of arbitrary geometry. To illustrate the utility of these results, we study the oscillatory thermal creep problem for which we find a tangential boundary layer flow arises at first order in the frequency ratio.
منابع مشابه
Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows
In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely ass...
متن کاملA ug 2 00 9 Accuracy analysis of high - order lattice Boltzmann models for rarefied gas flows †
In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely ass...
متن کاملFrequency - Domain DSMC Method for Oscillatory Gas Flows
Submitted for the DFD14 Meeting of The American Physical Society Frequency-Domain DSMC Method for Oscillatory Gas Flows DANIEL LADIGES, JOHN SADER, The University of Melbourne — Gas flows generated by resonating nanoscale devices inherently occur in the non-continuum, low Mach number regime. Numerical simulation of such flows presents a tremendous challenge, which has motivated the development ...
متن کاملDiscrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries
We present new numerical models for computing transitional or rarefied gas flows as described by the Boltzmann-BGK and BGK-ES equations. We first propose a new discrete-velocity model, based on the entropy minimization principle. This model satisfies the conservation laws and the entropy dissipation. Moreover, the problem of conservation and entropy for axisymmetric flows is investigated. We fi...
متن کاملA unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
With discretized particle velocity space, a unified gas-kinetic scheme for entire Knudsen number flows is constructed based on the BGK model. In comparison with many existing kinetic schemes for the Boltzmann equation, the current method has no difficulty to get accurate solution in the continuum flow regime, such as the solution of the Navier-Stokes (NS) equations with the time step being much...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013